Jumat, 07 April 2017

Pengertian Karakteristik Memori Dan Hirarki

A. Pengertian Sistem Memori
Sistem Memori ( Memori ) adalah komponen-komponen elektronik yang menyimpan perintah- perintah yang menunggu untuk di eksekusi oleh prosesor,data yang diperlukan oleh insruksi (perintah) tersebut dan hasil-hasil dari data yang diproses ( informasi ). Memori biasanya terdiri atas satu chip atau beberapa papan sirkuit lainnya dalam prosesor. Memori komputer bisa diibaratkan sebagai papan tulis, dimana setiap orang yang masuk kedalam ruangan bisa membaca dan memanfaatkan data yang ada dengan tanpa merubah susunan yang tersaji. Data yang diproses oleh komputer, sebenarnya masih tersimpan didalam memori, dan dalam hal ini komputer hanya membaca data dan kemudian memprosesnya. Satu kali data tersimpan didalam memori komputer, maka data tersebut akan tetap tinggal disitu selamanya. Setiap kali memori penuh, maka data yang ada bisa dihapus sebagian ataupun seluruhnya untuk diganti dengan data yang baru.

B.Karateristik Memori



a. Lokasi

• CPU
Memori ini built-in berada dalam CPU (mikroprosesor) dan diperlukan untuk semua kegiatan CPU. Memori ini disebut register.
• Internal (main)
Memori ini berada di luar chip processor tetapi bersifat internal terhadap sistem komputer dan diperlukan oleh CPU untuk proses eksekusi (operasi) program, hingga dapat diakses secara langsung oleh prosesor (CPU) tanpa modul perantara. Memori internal sering juga disebut sebagai memori primer atau memori utama. Memori internal biasanya menggunakan media RAM
• External (secondary)
Memori ini bersifat eksternal terhadap sistem komputer dan tentu saja berada di luar CPU dan diperlukan untuk menyimpan data atau instruksi secara permanen. Memori ini, tidak diperlukan di dalam proses eksekusi sehingga tidak dapat diakses secara langsung oleh prosesor (CPU). Untuk akses memori eksternal ini oleh CPU harus melalui pengontrol/modul I/O. Memori eksternal sering juga disebut sebagai memori sekunder. Memori ini terdiri atas perangkat storage peripheral seperti : disk, pita magnetik,dll.
a. Kapasitas

• Ukuran word
Kapasitas memori internal maupun eksternal biasanya dinyatakan dalam bentuk byte (1 byte = 8 bit) atau word.
• Banyaknya word
Panjang word umumnya 8, 16, 32 bit.

b. Satuan Transfer

Satuan transfer sama dengan jumlah saluran data yang masuk ke dan keluar dari modul memori. Konsep satuan transfer adalah :
• Word, merupakan satuan “alami” organisasi memori. Ukuran word biasanya sama dengan jumlah bit yang digunakan untuk representasi bilangan dan panjang instruksi.
• Addressable units, pada sejumlah sistem, adressable units adalah word. Namun terdapat sistem dengan pengalamatan pada tingkatan byte. Pada semua kasus hubungan antara panjang A suatu alamat dan jumlah N adressable unit adalah 2A =N.
• Unit of tranfer, adalah jumlah bit yang dibaca atau dituliskan ke dalam memori pada suatu saat. Pada memori eksternal, tranfer data biasanya lebih besar dari suatu word, yang disebut dengan block.

c. Metode Akses

Terdapat empat jenis pengaksesan satuan data, yaitu sebagai berikut.:
• Sequential access
Memori diorganisasikan menjadi unit-unit data, yang disebut record. Aksesnya dibuat dalam bentuk urutan linier yang spesifik. Informasi pengalamatan dipakai untuk memisahkan record-record dan untuk membantu proses pencarian. Mekanisme baca/tulis digunakan secara bersama (shared read/write mechanism), dengan cara berjalan menuju lokasi yang diinginkan untuk mengeluarkan record. Waktu access record sangat bervariasi. Contoh sequential access adalah akses pada pita magnetik.
• Direct access

Seperti sequential access, direct access juga menggunaka shared read/write mechanism, tetapi setiap blok dan record memiliki alamat yang unik berdasarkan lokasi fisik. Aksesnya dilakukan secara langsung terhadap kisaran umum (general vicinity) untuk mencapai lokasi akhir. Waktu aksesnya pun bervariasi. Contoh direct access adalah akses pada disk.
• Random access

Setiap lokasi dapat dipilih secara random dan diakses serta dialamati secara langsung. Waktu untuk mengakses lokasi tertentu tidak tergantung pada urutan akses sebelumnya dan bersifat konstan. Contoh random access adalah sistem memori utama.
• Associative access

Setiap word dapat dicari berdasarkan pada isinya dan bukan berdasarkan alamatnya. Seperti pada RAM, setiap lokasi memiliki mekanisme pengalamatannya sendiri. Waktu pencariannya pun tidak bergantung secara konstan terhadap lokasi atau pola access sebelumnya. Contoh associative access adalah memori cache.
a. Kinerja
Ada tiga buah parameter untuk kinerja sistem memori, yaitu :
Access time (Waktu Akses)
Bagi RAM, waktu akses adalah waktu yang dibutuhkan untuk melakukan operasi baca atau tulis. Sedangkan bagi non RAM, waktu akses adalah waktu yang dibutuhkan untuk melakukan mekanisme baca tulis pada lokasi tertentu
Cycle time (Waktu Siklus)
Waktu siklus adalah waktu akses ditambah dengan waktu transien hingga sinyal hilang dari saluran sinyal atau untuk menghasilkan kembali data bila data ini dibaca secara destruktif.
Transfer rate (Laju Pemindahan)
Transfer rate adalah kecepatan pemindahan data ke unit memori atau ditransfer dari unit memori. Bagi RAM, transfer rate sama dengan 1/(waktu siklus). Sedangkan, bagi non-RAM, berlaku persamaan sbb.:

TN = Waktu rata-rata untuk membaca / menulis sejumlah N bit.
TA = Waktu akses rata-rata
N = Jumlah bit
R = Kecepatan transfer, dalam bit per detik (bps)
a. Tipe Fisik
Ada dua tipe fisik memori, yaitu :
• Memori semikonduktor

Memori ini memakai teknologi LSI atau VLSI (very large scale integration). Memori ini banyak digunakan untuk memori internal misalnya RAM.
• Memori permukaan magnetik

Memori ini banyak digunakan untuk memori eksternal yaitu untuk disk atau pita magnetik.
b. Karakteristik Fisik
Ada dua kriteria yang mencerminkan karakteristik fisik memori, yaitu:
• Volatile dan Non-volatile

Pada memori volatile, informasi akan rusak secara alami atau hilang bila daya listriknya dimatikan. Selain itu, pada memori non-volatile, sekali informasi direkam akan tetap berada di sana tanpa mengalami kerusakan sebelum dilakukan perubahan. Pada memori ini daya listrik tidak diperlukan untuk mempertahankan informasi tersebut. Memori permukaan magnetik adalah non volatile. Memori semikonduktor dapat berupa volatile atau non volatile.
• Erasable dan Non-erasable

Erasable artinya isi memori dapat dihapus dan diganti dengan informasi lain. Memori semikonduktor yang tidak terhapuskan dan non volatile adalah ROM.

 Hirarki Memori

  • Semakin kecil waktu access maka akan semakin besar harga per bit.
  • Semakin besar kapasitas maka akan semakin kecil harga per bit namun akan semakin besar pula waktu access nya
Untuk mendapatkan kinerja terbaik, memori harus mampu mengikuti CPU. Artinya apabila CPU sedang mengeksekusi instruksi, kita tidak perlu menghentikan CPU untuk menunggu datangnya instruksi atau operand. Sedangkan untuk mendapatkan kinerja terbaik, memori menjadi mahal, berkasitas relatif rendah, dan waktu access yang cepat. Untuk memperoleh kinerja yang optimal, perlu kombinasi teknologi komponen memori. Dari kombinasi ini dapat disusun hirarki memori sebagai berikut:
Semakin menurun hirarki, maka hal-hal di bawah ini akan terjadi:
a) Penurunan harga per bit
b) Peningkatan kapasitas
c) Peningkatan waktu akses
d) Penurunan frekuensi akses memori oleh CPU.
Kunci keberhasilan hirarki ini pada penurunan frekuensi aksesnya. Semakin lambat memori maka keperluan CPU untuk mengaksesnya semakin sedikit. Secara keseluruhan sistem komputer akan tetap cepat namun kebutuhan kapasitas memori besar terpenuhi.

Sistem Yang Utama Pada Memori

Tahun 1960-an para programmer sistem mengembangkan sistem pengoperasian multiprogramming, yang memanfaatkan atau menggunakan memori utama yang sangat besar. 

• Komputer yang hanya mempunyai satu system memori utama dikatakan mempunyai one-level strorage system (system penyimpanan tingkat satu)

• Komputer yang mempunyai memori virtual menggunakan multilevel storage system (system penyimpanan bertingkat)

• Penyimpanan multilevel mempunyai memori sentral(internal) yaitu memori utama dan register CPU sebagai primary memori dan peralatan penyimpanan eksternal seperti hardisk dan disket sebagai secondary memori memori sekunder.
 
Organisasi Memori
Yang dimaksud dengan organisasi adalah pengaturan bit dalam menyusun word secara fisik.

• Salah satunya adalah menggunakan Inteleaving dimana tujuannya adalah untuk meningkatkan kecepatan pengaksesan sistem penyimpanan yang besar.

• Sistem penyimpanan yang besar terdiri atas beberapa bank memori independent yang diakses oleh CPU dan peralatan I/O melalui pengontrolan port memori Contoh : Cross bar switch Sistem penyimpanan menggunakan Interleave High Order.

 Setiap bank (penyimpanan) berisi blok alamat yang berurutan.

• Setiap peralatan, termasuk CPU, menggunakan bank memori yang berbeda untuk program dan datanya, maka semua bank dapat mentransfer data secara serentak. Sistem penyimpanan menggunakan Interleave Low Order.

 Alamat yang berurutan berada dalam bank yang terpisah, sehingga setiap peralatan perlu mengakses semua bank selagi menjalankan programnya atau mentransfer data. Contohnya : suatu siklus memori lebih lama daripada waktu siklus CPU.

• Apabila word yang berurutan berada dalam bank yang berbeda, maka system penyimpanan bila dilengkapi dengan putaran yang cocok dapat melengkapi akses memori yang berurutan, dengan kata lain setelah CPU meminta untuk mengakses word pertama yang disimpan dalam salah satu bank, maka ia dapat bergerak ke bank kedua dan mengawali akses word kedua sementara penyimpanan tetap mendapatkan kembali word pertama sementara penyimpanan tetap mendapatkan kembali word pertama. Pada CPU kembali ke bank pertama, system penyimpanan diharapkan telah menyelesaikan mengakses word pertama dan telah siap mengakses lagi.

• Banyak komputer berkinerja tinggi menggunakan Interleave Low Order.

RAM
RAM yang merupakan singkatan dari Random Access Memory adalah sebuah perangkat keras komputer yang berfungsi menyimpan berbagai data dan instruksi program. Berbeda dengan tape magnetik atau disk yang mengakses data secara berurutan, isi dari RAM dapat diakses secara random atau tidak mengacu pada pengaturan letak data. Data di dalam RAM bersifat sementara, dengan kata lain data yang tersimpan akan hilang jika komputer dimatikan atau catu daya yang terhubung kepadanya dicabut.

RAM biasa juga disebut sebagai memori utama (main memory), memori primer (primary memory), memori internal (internal memory), penyimpanan utama (primary storage), memory stick, atau RAM stick. Bahkan terkadang orang hanya menyebutnya sebagai memori meskipun ada jenis memori lain yang terpasang di komputer.

RAM merupakan salah satu jenis memori internal yang mendukung kecepatan prosesor dalam mengolah data dan instruksi. Dengan menggunakan tambahan RAM ke dalam komputer dapat menghasilkan pengaruh positif pada kinerja dan kecepatan komputer, meskipun RAM sebenarnya tidak menentukan kecepatan komputer.

Modul memori RAM yang umum diperdagangkan berkapasitas 128 MB, 256 MB, 512 MB, 1 GB, 2 GB, dan 4 GB.

Jenis-Jenis RAM
1. DRAM(Dynamic Random Access Memory)
adalah jenis RAM yang menyimpan setiap bit data yang terpisah dalam kapasitor dalam satu sirkuit terpadu. Data yang terkandung di dalamnya harus disegarkan secara berkala oleh CPU agar tidak hilang. Hal ini membuatnya sangat dinamis dibandingkan dengan memori lainnya. Dalam strukturnya, DRAM hanya memerlukan satu transistor dan kapasitor per bit, sehingga memiliki kepadatan sangat tinggi.

2. SRAM(Static Random Acces Memory)
adalah jenis RAM (sejenis memori semikonduktor) yang tidak menggunakan kapasitor. Hal ini mengakibatkan SRAM tidak perlu lagi disegarkan secara berkala seperti halnya dengan DRAM. Ini juga sekaligus membuatnya memiliki kecepatan lebih tinggi dari DRAM. Berdasarkan fungsinya terbagi menjadi Asynchronous dan Synchronous.

3.EDORAM(Extended Data Out Random Access Memory)

adalah jenis RAM yang dapat menyimpan dan mengambil isi memori secara bersamaan, sehingga kecepatan baca tulisnya pun menjadi lebih cepat. Umumnya digunakan pada PC terdahulu sebagai pengganti Fast Page Memory (FPM) RAM.

4.SDRAM(Synchronous Dynamic Random Acces Memory)

adalah jenis RAM dinamis yang kemampuan kecepatannya lebih cepat dari pada EDORAM dan kepingannya terdiri dari 168 pin. RAM ini disinkronisasi oleh clock sistem dan cocok untuk sistem dengan bus yang memiliki kecepatan sampai 100 MHz.

 5.RDRAM(Rambus Dynamic Random Access Memory)

adalah salah satu tipe dari RAM dinamis sinkron yang diproduksi oleh Rambus Corporation menggunakan Bus Speed sebesar 800 MHz tetapi memiliki jalur data yang sempit (8 bit). RDRAM memiliki memory controller yang canggih sehingga tidak semua motherboard bisa mendukungnya. Contoh produk yang memakainya adalah 3dfx seri Voodoo4.

6. NVRAM(Non-Volatile Random Access Memory)

merupakan jenis RAM yang menggunakan baterai Litium di dalamnya sehingga data yang tersimpan tidak akan hilang meskipun daya dimatikan.

ROM

ROM kependekan dari Read Only Memory, yaitu perangkat keras pada komputer berupa chip memori semikonduktor yang isinya hanya dapat dibaca. ROM tidak dapat digolongkan sebagai RAM, walaupun keduanya memiliki kesamaan yaitu dapat diakses secara acak (random).ROM berbeda dengan RAM.
Perbedaan diantara keduanya antara lain:
1. ROM tidak dapat diisi atau ditulisi data sewaktu-waktu seperti RAM. Pengisian atau penulisan data, informasi, ataupun program pada ROM memerlukan proses khusus yang tidak semudah dan se-fleksibel cara penulisan pada RAM. Biasanya, data atau program yang tertulis pada ROM diisi oleh pabrik yang membuatnya. Umumnya ROM digunakan untuk menyimpan firmware, yaitu perangkat lunak yang berhubungan dengan perangkat keras. Contoh ROM semacam ini adalah ROM BIOS. ROM BIOS berisi program dasar sistem komputer yang berfungsi untuk mengatur dan menyiapkan semua peralatan atau komponen yang ada atau yang terpasang pada komputer saat komputer ‘dinyalakan/dihidupkan’. 
2. Informasi/data/program yang tertulis pada ROM (isi ROM) bersifat permanen dan tidak mudah hilang dan tidak mudah berubah walaupun komputer ‘dimatikan’ atau dalam keadaan mati (off). Sedangkan pada RAM, semua isinya (baik berupa data, 
program atau informasi) akan hilang dengan sendirinya jika komputer ‘dimatikan’ (dalam keadaan off). 
3. ROM dapat menyimpan data tanpa membutuhkan daya. Itulah sebabnya data dalam ROM tidak akan hilang walaupun komputer mati. Sedangkan RAM membutuhkan daya agar dapat menyimpan data, jika RAM tidak mendapatkan daya, dengan sendirinya tidak akan dapat menyimpan data. Hal inilah yang menyebabkan data yang terdapat dalam RAM secara otomatis akan hilang bila komputer mati (off). 
4. ROM modern sering ditemukan dalam bentuk IC (Integrated Circuit), sama seperti RAM yag wujudnya kebanyakan juga berupa IC. Teks atau kode yang tertulis pada kedua jenis IC ini berbeda. IC ROM biasanya memiliki kode tulisan (teks) 27xxx. Angka 27 menunjukkan kode untuk ROM, sedangkan xxx menjunjukkan kapasitas ROM dalan satuan kilo bit.

Fungsi ROM (Read Only Memory)

Seperti telah diungkapkan sebelumnya bahwa umumnya ROM digunakan untuk menyimpan firmware. Pada perangkat komputer, sering ditemukan untuk menyimpan BIOS. Pada saat sebuah komputer dinyalakan, BIOS tersebut dapat langsung dieksekusi dengan cepat, tanpa harus menunggu untuk menyalakan perangkat media penyimpan lebih dahulu seperti yang umum terjadi pada alat penyimpan lain selain ROM. Umumnya, pada media simpan lain, jika dieksekusi untuk dibaca isi atau datanya, media simpan tersebut harus dinyalakan lebih dahulu sebelum dibaca, yang tentu saja membutuhkan waktu agak lama. Hal seperti ini tidak terjadi pada ROM. Pada komputer (PC) modern, BIOS disimpan dalam chip ROM yang dapat ditulisi ulang secara elektrik yang dikenal dengan nama Flash ROM. Itulah sebabnya istilah flash BIOS lebih populer daripada ROM BIOS. Read-only Memory (ROM) adalah media penyimpanan data pada komputer yang bersifat permanen tanpa bisa dirubah lagi isinya, artinya program atau data yang disimpan didalam ROM ini tidak mudah hilang atau berubah walau aliran listrik di matikan.


Menyimpan data pada ROM tidak dapat dilakukan dengan mudah, namun membaca data dari ROM dapat dilakukan dengan mudah. Biasanya program / data yang ada dalam ROM ini diisi oleh pabrik yang membuatnya. Oleh karena sifat ini, ROM biasa digunakan untuk menyimpan firmware (semacam software yang menyimpan informasi data pada hardware). Salah satu contoh ROM adalah chip BIOS atau CMOS yang berisi program dasar system komputer yang mengatur / menyiapkan semua peralatan / komponen yang ada dalam komputer saat komputer dihidupkan. ROM modern didapati dalam bentuk IC (Integrated Circuit), persis seperti medium penyimpanan/memori lainnya seperti RAM. Untuk membedakannya perlu membaca teks yang tertera pada IC-nya. Biasanya dimulai dengan nomer 27xxx, angka 27 menunjukkan jenis ROM , xxx menunjukkan kapasitas dalam kilo bit ( bukan kilo byte ). 

Jenis-Jenis ROM
Sampai sekarang dikenal beberapa jenis ROM yang pernah beredar dan terpasang pada komputer, antara lain Mask ROM, PROM, EPROM, EAROM, EEPROM, dan Flash Memory. Berikut ini disajikan uraian singkat dari masing-masing jenis ROM tersebut.

PROM

PROM kependekan dari Programmable Read Only Memory. PROM adalah salah satu jenis ROM, merupakan alat penyimpan berupa memori (memory device) yang hanya bisa dibaca isinya. PROM memang tergolong memori non-volatile, artinya program yang tersimpan di dalamnya tidak akan hilang walaupun komputer dimatikan (tidak mendapatkan daya listrik). Program yang tersimpan di dalamnya bersifat permanen. Biasanya digunakan untuk menyimpan program bahasa mesin yang sudah menjadi bagian hardware (perangkat keras) komputer. Contohnya adalah program yang men-start komputer ketika komputer baru dinyalakan (di-on-kan). Program yang ada di dalam PROM diisi oleh pabrik pembuatnya. Pengisian program ke dalam PROM menggunakan alat khusus bernama PROM burner, atau PROM Writer Program atau informasi yang telah diisikan atau direkamkan ke dalam PROM, tidak dapat dihapus lagi.

EPROM

EPROM  kependekan  dari Erasable  Programmable  Read  Only Memory. EPROM berbeda dengan PROM. EPROM adalah jenis chip memori yang dapat ditulisi program secara elektris. Program atau informasi yang tersimpan di dalam EPROM dapat dihapus bila terkena sinar ultraviolet dan dapat ditulisi kembali. Kesamaannya dengan PROM adalah keduanya merupakan jenis ROM, termasuk memori non-volatile, data yang tersimpan di dalamnya tidak bisa hilang walaupun komputer dimatikan, tidak membutuhkan daya listrik untuk mempertahankan atau menjaga informasi atau program yang tersimpan di dalamnya. Alat yang dapat digunakan untuk menghapus isi chip EPROM adalah UV PROM eraser. Alat ini akan menyinarkan sinar ultraviolet ke memori tempat data disimpan dalam chip EPROM (disinarkan tepat pada lubang kuarsa bening). Dengan demikian, chip EPROM dapat digunakan kembali dan dapat diisikan informasi/program baru ke dalamnya. Informasi lain menyebutkan bahwa alat yang dapat digunakan untuk menghapus isi EPROM adalah EPROM Rewriter.

EEPROM


EEPROM kependekan dari Electrically Erasable Programmable Read Only Memory. Seperti halnya PROM dan EPROM, EEPROM merupakan memori non-volatile. Informasi, data atau program yang tersimpan di dalamnya tidak akan hilang walaupun komputer dimatikan, dan tidak membutuhkan daya listrik untuk mempertahankan atau menjaga informasi atau program yang tersimpan di dalamnya. EEPROM adalah komponen yang banyak digunakan dalam komputer dan peralatan elektronik lain untuk menyimpan konfigurasi data pada peralatan elektronik tersebut. Kapasitas atau daya tampung simpan datanya sangat terbatas. Pada sistem hardware komputer, chip EEPROM umumnya digunakan untuk menyimpan data konfigurasi BIOS dan pengaturan (setting) sistem yang berhubungan dengannya.

EEPROM memiliki kelebihan tersendiri dibandingkan EPROM. EEPROM dapat dihapus secara elektris menggunakan sinar ultraviolet, sehingga proses penghapusannya lebih cepat dibandingkan EPROM. Penghapusan juga dapat dilakukan secara elektrik dari papan circuit dengan menggunakan perangkat lunak EEPROM Programmer. Alat yang dapat digunakan untuk menghapus isi EEPROM disebut EEPROM Rewriter. Produk EEPROM versi awal, hanya dapat dihapus dan diisi ulang kurang lebih sebanyak 100 kali. Sedangkan produk-produk terbaru dapat dihapus dan diisi ulang (erase-rewrite) sampai ribuan kali (bahkan beberapa informasi menyebutkan mampu sampai 100 ribu kali)

Flash Memory


Flash memory yang dikenal pula dengan sebutan memori flash, adalah memori sejenis EEPROM yang memberikan banyak lokasi memori untuk dihapus atau ditulisi dalam suatu operasi pemrograman. Flash memory tetap dapat menyimpan data tanpa memerlukan penyediaan listrik. Penulisan ke dalam flash memori dapat dilakukan dengan menggunakan alat yang disebut EEPROM Writer atau software yang dapat menulisi Flash ROM. Sedangkan penghapusan datanya dapat dilakukan dengan menggunakan alat yang disebut EEPROM Writer, atau langsung secara elektrik dari papan sirkuit dengan menggunakan software Flash BIOS Programmer. Memori jenis ini banyak digunakan dalam  kartu memori, drive flash USB, kamera digital, pemutar MP3, hingga telepon genggam.

BIOS dan ROM


BIOS memang berkaitan erat dengan ROM, sebab sebagian besar BIOS yang terdapat di dalam perangkat keras komputer disimpan di dalam ROM, baik PROM, EPROM, EEPROM, Flash ROM, ataupun jenis ROM lainnya. Namun, setelah tahun 1995, EEPROM dan Flash Memory lebih banyak digunakan daripada jenis ROM lainnya karena BIOS yang terdapat pada kedua jenis ROM ini mudah dihapus dan ditulisi lagi sehingga membuka kemungkinan dilakukannya update BIOS. Update BIOS seringkali diperlukan oleh para pengguna komputer karena beberapa alasan, antara lain:
  1. Untuk mendukung prosesor yang lebih baru, sebab pengguna komputer baru saja mengganti prosesor yang lama dengan prosesor tipe baru untuk mendapatkan kinerja yang lebih baik.
  2. Untuk mendukung perangkat lain yang baru dipasangkan karena BIOS yang lama belum memberikan dukungan pada perangkat tipe baru tersebut.
  3. Adanya bug yang mengganggu pada BIOS yang lama.
  4. Atau berbagai alasan lainnya.

Para produsen  motherboard sering menyediakan BIOS versi baru untuk meningkatkan kemampuan produk mereka atau untuk membuang bug-bug yang mengganggu. Adanya bug-bug pada BIOS biasanya baru diketahui setelah BIOS tersebut dirilis. Oleh karena itu BIOS yang ber-bug harus di-update dengan BIOS versi yang lebih baru yang merupakan edisi perbaikan dari BIOS yang lama.
Proses update BIOS harus dilakukan dengan cermat dan hati-hati. Proses update yang tidak benar dapat mengakibatkan tidak berfungsinya motherboard (motherboard mati), karena firmware yang digunakan untuk membantu proses booting (BIOS) tidak dapat berfungsi. Kerusakan yang terjadi bukan kerusakan fisik komponen  motherboard, tetapi kerusakan software BIOS (firmware) yang ada pada EEPROM atau Flash Memory.

Kebanyakan  BIOS  pada saat ini, memiliki sebuah region (lokasi) di dalam  EEPROM atau Flash Memory yang disebut dengan istilah Boot Block yang sengaja ‘dilindungi’ dan tidak dapat di-upgrade. Ketika komputer dinyalakan, Boot Block tersebut selalu dieksekusi pertamakali. Kode dari Boot Block akan  mem-verifikasi BIOS untuk mengetahui apakah BIOS dalam kondisi normal atau  rusak. Apabila BIOS dalam kondisi normal (tidak rusak), komputer segera mengeksekusi BIOS itu sendiri. Sebaliknya, bila ternyata BIOS mengalami kerusakan, maka boot block akan menampilkan pesan di layar monitor agar pengguna komputer melakukan pemrograman (pengisian) BIOS lagi dengan menggunakan versi BIOS yang sama atau di-update dengan versi BIOS yang lebih baik. Program BIOS yang digunakan untuk meng-update biasanya disimpan di dalam disket, di dalamnya tersimpan flash memory programmer dan image BIOS.

Bentuk awal ROM 
    • terdiri dari sirkuit-sirkuit terpadu
    • menggunakan switch transistor, data secara fisik dikodekan ke dalam rangkaian. 
    • hanya bisa diprogram selama fabrikasi aslinya. 
    • read-only
    • tidak ada perubahan yang mungkin sama sekali. 
    • Hal ini juga disebut dengan ROM masker
    • tapi pada tahun 1990-an, memori flash telah diciptakan dan disajikan secara alternatif yang jauh lebih baik lagi. Flash memori juga non-volatile
    • sehingga membuat data tetap ada saat daya dimatikan, tetapi data dapat ditimpa. 
    • Ini berarti bahwa firmware dapat diperbarui jika diperlukan. 
    • Flash ROM sekarang standarnya pada kebanyakan komputer. Secara teknisnya flash ROM tidak lagi read-only, akan tetapi sangat sedikit pengguna komputer biasa memodifikasi firmwarenya dari pc/komputer mereka sendiri. 
    • Jika dibandingkan dengan jenis lainnya dari penyimpanan, ROM pada umumnya cukup kecil. Firmware tidak memakan banyak ruang, serta memiliki kapasitas penyimpanan yang lebih besar ROM tidak membuat PC boot up lebih cepat.

Sumber : 
http://firlyanggi.blogspot.co.id/2010/12/sistem-memori.html
http://notebase.blogspot.co.id/2012/05/perbedaan-dram-sram-edoram-sdram-rdram.html
http://penertiandanfungsiroom.blogspot.co.id/
http://notepedia.blogspot.co.id/2014/10/pengertian-jenis-jenis-dan-fungsi-rom.html











Senin, 20 Maret 2017

SOAL PEMBAHASAN UTS SEMESTER 2 TINGKAT SMK/MAK SISTEM KOMPUTER KELAS X ANANTA SADHAM HUSEIN

Lihat Dan Download Jawaban, Copy/Klik Link Di Bawah Ini :
https://www.dropbox.com/s/z0lgsklvvw1lt1w/ANANTA%20SADHAM%20HUSEIN%20SISKOM.docx?dl=0

Lihat Dan Download Soal, Copy/Klik Link Di Bawah Ini :
https://www.dropbox.com/s/kp5hganbl72zydv/Soal%201.jpg?dl=0
https://www.dropbox.com/s/pugg2uli16y51fd/Soal%202.jpg?dl=0
https://www.dropbox.com/s/gks3m4d37x5p6e0/Soal%203.jpg?dl=0

Terima Kasih.

Selasa, 28 Februari 2017

Media Penyimpan Data

A. Pengertian Magnetik Disc

Adalah sebuah piringan bundar yang dibuat dari logam atau plastik yang dilapisi dengan bahan yang dapat dimagnetisasi.
Data yang dikirim akan direkam di atasnya dan kemudian dapat dibaca dari disk dengan menggunakan komponen pengkonduksi (conducting coil) yang dikenal dengan head. Selama operasi pembacaan dan penulisan, head akan bekerja dengan sifat stasioner sedangankan piringan berputar di bawah head tersebut. 

Pada saat disk digunakan, motor drive berputar dengan kecepatan yang sangat tinggi (biasanya 60-100 putaran per detik). Mekanisme penulisan didasarkan pada medan magnet yang dihasilkan oleh arus listrik yang mengalir melalui sebuah kumparan, tegangan dikirim ke head  dan pola-pola magnetik direkam pada permukaan di bawahnya, dengan pola yang berbeda bagi arus listrik positif dan negatif. Mekanisme pembacaan didasarkan pada arus listrik yang berada di dalam kumparan yang dihasilkan oleh medan listrik yang bergerak relatif terhadap kumparan. Pada saat disk melintas bagian bawah head, permukaan disk mengeluarkan arus yang mempunyai polaritas yang sama dengan polaritas waktu merekam pada disk tersebut.
Lebar dari piringan disk berkisar antara 1,8 sampai 14 inchi. Disk yang berukuran besar terdapat pada system-sistem yang besar karena daya simpannya juga sangat besar dan proses transfer data yang tinggi. Disk yang kecil banyak kita jumpai di pasaran, biasanya dipakai pada PC.

Dalam magnetic disk terdapat dua metode layout data pada disk yaitu Constant Angular Velocity dan Multiple Soned Recording. Disk diorganisasi (permukaan dari piringan dibagi) dalam bentuk cincin-cincin konsentris yang disebut track atau garis yang memisahkan atar track seperti gambar dibawah. tiap track dipisahkan oleh gap, fungsi gap adalah untuk mencegah atau mengurangi kesalahan pembacaan atau penulisan yang disebabkan melesetnya head atau karena interferensi medan magnet. Blok-blok data disimpan dalam disk berukuran blok yang disebut dengan sector. Track biasanya terisi beberapa sector, umumnya 10 hingga 100 sector tiap tracknya, Dan dibawah ini adalah contoh gambarnya:

Karakteristik Magnetic Disc


Komponen utama Pada Magnetic Disk adalah pelat (platter) yang berfungsi sebagai penyimpan data. Pelat ini adalah suatu cakram padat yang berbentuk bulat datar, kedua sisi permukaannya dilapisi dengan material khusus sehingga memiliki pola-pola magnetis. Pelat ini ditempatkan dalam suatu poros yang disebut spindle.

Media magnetik seperti disket floppy dan hard disk mempunya sejumlah keunggulan dibanding dengan media lainnya. Penyimpanan data pada media ini bersifat nonvolatile, artinya data yang telah disimpan tidak akan hilang ketika komputer dimatikan. Data pada media ini dapat dibaca, dihapus dan ditulis ulang. Keunggulan lainnya ialah, media ini mudah digunakan. Selain memiliki keunggulan, media ini juga mempunyai kelemahan.
Musuh utama dari media magnetik seperti disket floppy dan hard disk. Karena jamur dan karat ini, maka daya tahan atau umur media ini menjadi pendek. Jika dipakai secara kontinu atau terus menerus sekitar 8 jam per hari, maka umur suatu disket floppy paling lama 1 (satu) tahun, dan umur hard disk paling lama 3 (tiga) tahun. Kelemahan lain dari media magnetik ini ialah bentuknya yang bergaris-garis (track, sector), sehingga kecepatan dan kapasitas simpannya termasuk rendah jika dibanding dengan media optik.

Ada beberapa contoh lainnya dari kelebihan ini
1. Spindle

Hard disk terdiri dari spindle yang menjadi pusat putaran dari keping-keping cakram magnetik penyimpan data. Spindle ini berputar dengan cepat, oleh karena itu harus menggunakan high quality bearing.

Dahulu hard disk menggunakan ball bearing namun kini hard disk sudah menggunakan fluid bearing. Dengan fluid bearing maka gaya friksi dan tingkat kebisingan dapat diminimalisir. Spindle ini yang menentukan putaran hard disk. Semakin cepat putaran rpm hard disk maka semakin cepat transfer datanya.

2. Cakram Magnetik (Magnetic Disk)

Pada cakram magnetik inilah dilakukan penyimpanan data pada hard disk. Cakram magnetik berbentuk plat tipis dengan bentuk seperti CD-R. Dalam hard disk terdapat beberapa cakram magnetik. 

Hard disk yang pertama kali dibuat, terdiri dari 50 piringan cakram magnetik dengan ukuran 0.6 meter dan berputar dengan kecepatan 1.200 rpm. Saat ini kecepatan putaran hard disk sudah mencapai 10.000rpm dengan transfer data mencapai 3.0 Gbps.


3. Read-write Head

Read-write Head adalah pengambil data dari cakram magnetik. Head ini melayang dengan jarak yang tipis dengan cakram magnetik. Dahulu head bersentuhan langsung dengan cakram magnetik sehingga mengakibatkan keausan pada permukaan karena gesekan. Kini antara head dan cakram magnetik sudah diberi jarak sehingga umur hard disk lebih lama.

Read-write head terbuat bahan yang terus mengalami perkembangan, mulai dari Ferrite head, MIG (Metal-In-Gap) head, TF (Thin Film) Head, (Anisotropic) Magnetoresistive (MR/AMR) Heads, GMR (Giant Magnetoresistive) Heads dan sekarang yang digunakan adalah CMR (Colossal Magnetoresistive) Heads.


4. Enclosure

Enclosure adalah lapisan luar pembungkus hard disk. Enclosure berfungsi melindungi semua bagian dalam hard disk agar tidak terkena debu, kelembaban dan hal lain yang dapat mengakibatkan kerusakan data.
 
Dalam enclosure terdapat breath filter yang membuat hard disk tidak kedap udara, hal ini bertujuan untuk membuang panas yang ada didalam hard disk karena proses putaran spindle dan pembacaan Read-write head.

5. Interfacing Module

Interfacing modul berupa seperangkat rangkaian elektronik yang mengendalikan kerja bagian dalam hard disk, memproses data dari head dan menghasilkan data yang siap dibaca oleh proses selanjutnya. Interfacing modul yang dahulu banyak dipakai adalah sistem IDE (Integrated Drive Electronics) dengan sistem ATA yang mempunyai koneksi 40 pin.

B. Pengertian Teknologi Raid

RAID, singkatan dari Redundant Array of Independent Disk merujuk kepada sebuah teknologi di dalam penyimpanan data komputer yang digunakan untuk mengimplementasikan fitur toleransi kesalahan pada media penyimpanan komputer (terutama hard disk) dengan menggunakan cara redundansi (penumpukan) data, baik itu dengan menggunakan perangkat lunak, maupun unit perangkat keras RAID terpisah. 

Kata “RAID” juga memiliki beberapa singkatan Redundant Array of Inexpensive Disks, Redundant Array of Independent Drives, dan juga Redundant Array of Inexpensive Drives. Teknologi ini membagi atau mereplikasi data ke dalam beberapa hard disk terpisah. RAID didesain untuk meningkatkan keandalan data dan meningkatkan kinerja I/O dari hard disk.

RAID merupakan organisasi disk memori yang mampu menangani beberapa disk dengan sistem akses paralel dan redudansi ditambahkan untuk meningkatkan reliabilitas. Kerja paralel ini menghasilkan resultan kecepatan disk yang lebih cepat.
Struktur Teknologi Raid

Disk memiliki resiko untuk mengalami kerusakan. Kerusakan ini dapat berakibat turunnya kinerja atau pun hilangnya data. Meski pun terdapat backup data, tetap saja ada kemungkinan data yang hilang karena adanya perubahan setelah terakhir kali data di-backup. Karenanya reliabilitas dari suatu disk harus dapat terus ditingkatkan.

Berbagai macam cara dilakukan untuk meningkatkan kinerja dan juga reliabilitas dari disk. Biasanya untuk meningkatkan kinerja, dilibatkan banyak disk sebagai satu unit penyimpanan. Tiap-tiap blok data dipecah ke dalam beberapa subblok, dan dibagi-bagi ke dalam disk-disk tersebut. Ketika mengirim data disk-disk tersebut bekerja secara paralel, sehingga dapat meningkatkan kecepatan transfer dalam membaca atau menulis data. Ditambah dengan sinkronisasi pada rotasi masing-masing disk, maka kinerja dari disk dapat ditingkatkan. Cara ini dikenal sebagai RAID. Selain masalah kinerja RAID juga dapat meningkatkan realibilitas dari disk dengan jalan melakukan redundansi data.

 Tiga karakteristik umum dari RAID ini, yaitu :
  1. RAID adalah sekumpulan disk drive yang dianggap sebagai sistem tunggal disk.
  2. Data didistribusikan ke drive fisik array.
  3. Kapasitas redunant disk digunakan untuk menyimpan informasi paritas, yang menjamin recoveribility data ketika terjadi masalah atau kegagalan disk.

Jadi, RAID merupakan salah satu jawaban masalah kesenjangan kecepatan disk memori dengan CPU dengan cara menggantikan disk berkapasitas besar dengan sejumlah disk-disk berkapasitas kecil dan mendistribusikan data pada disk-disk tersebut sedemikian rupa sehingga nantinya dapat dibaca kembali.

Level-Level Raid
RAID dapat dibagi menjadi 8 level yang berbeda, yaitu level 0, level 1, level 2, level 3, level 4, level 5, level 6, level 0+1 dan 1+0. Setiap level tersebut memiliki kelebihan dan kekurangannya. : 
1. RAID level 0
    RAID level 0 menggunakan kumpulan disk dengan striping pada level blok, tanpa redundansi. Jadi hanya menyimpan melakukan striping blok data ke dalam beberapa disk. Level ini sebenarnya tidak termasuk ke dalam kelompok RAID karena tidak menggunakan redundansi untuk peningkatan kinerjanya.
definisi dan penjelasan lengkap tentang raid redundant
2. RAID level 1
    RAID level 1 ini merupakan disk mirroring, menduplikat setiap disk. Cara ini dapat meningkatkan kinerja disk, tetapi jumlah disk yang dibutuhkan menjadi dua kali lipat, sehingga biayanya menjadi sangat mahal. Pada level 1 (disk duplexing dan disk mirroring) data pada suatu partisi hard disk disalin ke sebuah partisi di hard disk yang lain sehingga bila salah satu rusak , masih tersedia salinannya di partisi mirror.definisi dan penjelasan lengkap tentang raid redundant
3. RAID level 2
    RAID level 2 ini merupakan pengorganisasian dengan error-correcting-code (ECC). Seperti pada memori di mana pendeteksian terjadinya error menggunakan paritas bit. Setiap byte data mempunyai sebuah paritas bit yang bersesuaian yang merepresentasikan jumlah bit di dalam byte data tersebut di mana paritas bit=0 jika jumlah bit genap atau paritas=1 jika ganjil. Jadi, jika salah satu bit pada data berubah, paritas berubah dan tidak sesuai dengan paritas bit yang tersimpan. Dengan demikian, apabila terjadi kegagalan pada salah satu disk, data dapat dibentuk kembali dengan membaca error-correction bit pada disk lain.
definisi dan penjelasan lengkap tentang raid redundant

4. RAID level 3
   RAID level 3 merupakan pengorganisasian dengan paritas bit interleaved. Pengorganisasian ini hampir sama dengan RAID level 2, perbedaannya adalah RAID level 3 ini hanya memerlukan sebuah disk redundan, berapapun jumlah kumpulan disk-nya. Jadi tidak menggunakan ECC, melainkan hanya menggunakan sebuah bit paritas untuk sekumpulan bit yang mempunyai posisi yang sama pada setiap disk yang berisi data. Selain itu juga menggunakan data striping dan mengakses disk-disk secara paralel.


5. RAID level 4
    RAID level 4 merupakan pengorganisasian dengan paritas blok interleaved, yaitu menggunakan striping data pada level blok, menyimpan sebuah paritas blok pada sebuah disk yang terpisah untuk setiap blok data pada disk-disk lain yang bersesuaian. Jika sebuah disk gagal, blok paritas tersebut dapat digunakan untuk membentuk kembali blok-blok data pada disk yang gagal tadi. Kecepatan transfer untuk membaca data tinggi, karena setiap disk-disk data dapat diakses secara paralel. Demikian juga dengan penulisan, karena disk data dan paritas dapat ditulis secara paralel.

RAID level 5
   RAID level 5 merupakan pengorganisasian dengan paritas blok interleaved tersebar. Data dan paritas disebar pada semua disk termasuk sebuah disk tambahan. Pada setiap blok, salah satu dari disk menyimpan paritas dan disk yang lainnya menyimpan data. Sebagai contoh, jika terdapat kumpulan dari 5 disk, paritas blok ke n akan disimpan pada disk (n mod 5) + 1; blok ke n dari empat disk yang lain menyimpan data yang sebenarnya dari blok tersebut. Sebuah paritas blok tidak menyimpan paritas untuk blok data pada disk yang sama, karena kegagalan sebuah disk akan menyebabkan data hilang bersama dengan paritasnya dan data tersebut tidak dapat diperbaiki. Penyebaran paritas pada setiap disk ini menghindari penggunaan berlebihan dari sebuah paritas disk.
7. RAID level 6
   RAID level 6 disebut juga redundansi P+Q, seperti RAID level 5, tetapi menyimpan informasi redundan tambahan untuk mengantisipasi kegagalan dari beberapa disk sekaligus. RAID level 6 melakukan dua perhitungan paritas yang berbeda, kemudian disimpan di dalam blok-blok yang terpisah pada disk-disk yang berbeda. Jadi, jika disk data yang digunakan sebanyak n buah disk, maka jumlah disk yang dibutuhkan untuk RAID level 6 ini adalah n+2 disk. Keuntungan dari RAID level 6 ini adalah kehandalan data yang sangat tinggi, karena untuk menyebabkan data hilang, kegagalan harus terjadi pada tiga buah disk dalam interval rata-rata untuk perbaikan data (Mean Time To Repair atau MTTR). Kerugiannya yaitu penalti waktu pada saat penulisan data, karena setiap penulisan yang dilakukan akan mempengaruhi dua buah paritas blok.

8. RAID level 0+1 dan 1+0
    RAID level 0+1 dan 1+0 ini merupakan kombinasi dari RAID level 0 dan 1. RAID level 0 memiliki kinerja yang baik, sedangkan RAID level 1 memiliki kehandalan. Namun, dalam kenyataannya kedua hal ini sama pentingnya. Dalam RAID 0+1, sekumpulan disk di-strip, kemudian strip tersebut di-mirror ke disk-disk yang lain, menghasilkan strip-strip data yang sama.
     Kombinasi lainnya yaitu RAID 1+0, di mana disk-disk di-mirror secara berpasangan, dan kemudian hasil pasangan mirrornya di-strip. RAID 1+0 ini mempunyai keuntungan lebih dibandingkan dengan RAID 0+1. Sebagai contoh, jika sebuah disk gagal pada RAID 0+1, seluruh strip-nya tidak dapat diakses, hanya sebagian strip saja yang dapat diakses, sedangkan pada RAID 1+0, disk yang gagal tersebut tidak dapat diakses, tetapi pasangan mirror-nya masih dapat diakses, yaitu disk-disk selain dari disk yang gagal.

C. Pita Magnetik
Pita magnetik adalah salah satu alat penimpanan eksternal yang menggunakan pita magnetik yang terbuat dari plastik.
Berawal dari tugas Dosen yg memberi tugas utk mencari gambar2 macam pita magnetik, gw udah aduk2 internet cuma  dapat defenisinya doang sedangkan gambarnya mau di serch lgi.
Dengan adanya blog ini, semoga bisa membantu lu pada yg mungkin dapat tugas yang kurang lebih sama kayak tugas gw.
Adapun macam-macam pita magnetik adalah sbb:

a. QIC
QIC adalah singkatan dari dari quarter-inch-tape. Semula dibuat oleh perusahaan 3M untuk menyimpan data telekomunikasi, tetapi kemudian banyak digunakan pada PC tunggal karena harganya murah. Tape QIC secara otomatis mengoreksi data yang baru saja ditulis, dan jika menemui kesalahan, otomotis akan menuliskan kembali ke bagian pita berikutnya. Kelemahan utama QIC adalah pada kompatibilitasnya. Tak semua drive QIC kompatibel dengan standar. Biasanya QIC menggunakan 72 track (jalur penulisan data pada pita). Saat ini maksimal 144 track, dengan kemampuan merekam data 10 sampai dengan 13 GB.

b. Travan
Travan dengan format TR-5 memiliki 108 track. Kemampuan penyimpanan sebesar 10GB/20GB dan dengan kecepatan transfer data sebesar 1 Mbps.
c. DAT
DAT merupakan singkatan dari Digital Audio Tape. Teknologi DAT dipergunakan untuk merekam pada pita dengan lebar 4 mm dengan mempergunakan teknik perekaman helical scan, yaitu teknik yang digunakan untuk merekam pada video tape dengan kecepatan putaran 2000 RPM. Pada teknik helical scan, perekamandilakukan dalam posisi tulis agak miring, mampu merekam lebih padat. Untuk menghindari kesalahan, perekaman ditambah dengan ECC (Error Correction Code). Bila ada kesalahan perekaman, perekaman akan dilakukan ulang. Bila pada saat restore (data dibaca untuk dituliskan ke hard disk) pita akan diputarterlebih dahulu untuk menemukan titik ujung penulisan data. Saat mengembalikan data dari pita ke sistem komputer, apabila terjadi kesalahan,kerusakan tersebut dapat diperbaiki dengan menggunakan ECC. Setelah semua data terverifikasi dengan benar, seluruh data dituliskan ke hard disk. Salah satu format DAT adalah DDS (Digital Data Storage). Salah satu standar DDS yaitu DDS-4 yang mempunyai kapasitas 20GB (atau 40GB untuk yang terkompresi) dengan kecepatan transfer data sebesar 2,4/4,8 Mbps.

d. 8mm
Teknologi pita 8mm semula ditujukan untuk industri video, untuk menyimpan citra berwarna berkualitas tinggi. Saat ini teknologi 8mm telah diadopsi oleh industri komputer sebagai cara
menyimpan data dalam jumlah besar, lebih besar daripada DAT. Pita 8mm juga memanfaatkan teknologi helical scan. Selain itu ada dua protokol utama yangditerapkan pada teknologi ini, dengan mempergunakan algoritma kompresi yangberbeda dan teknologi drive yang berbeda juga. Teknologi tersebut adalah Mammoth buatan Exabyte Corporation serta AIT (Advanced Intelligent Tape) buatan Seagate dan Sony.

e. Teknologi AIT
Tape cartridge AIT memanfaatkan cip MIC yangberupa EEPROM 64KB. Fungsi cip ini adalah untuk merekam semua informasi yang kalau pada pita lain selalu terdapat dalam segmen pertama. Informasi yang dimaksud antara lain berupaindeks yang menandai lokasi data dalam berkas. Saat pita dimasukkan ke dalam drive, konektor di dalam drive akan terhubung ke cip MIC. Karena lokasi data dalam berkas dapat diketahui langsung dari cip MIC, maka drive dapatmemperkirakan seberapa jauh harus menggulung, dan tak perlu membaca tanda alamat seperti yang ada di pita pada umumnya. Saat lokasi data hampir tercapai, kecepatan putaran berkurang, dan motor mengurangi kecepatan untuk mulai membaca tanda identitas alamat guna mencari lokasi data yang sebenarnya. Hasil dari teknologi adalah kecepatan yang jauh meningkat sampai 150 kali kecepatan pita normal. Selain itu, keausan media menjadi terkurangi karena head hanya membaca tanda identitas alamat setelah mendekati lokasi file yang di minta saja. AIT juga memanfaatkan teknologi ALDC (Advanced Lossless Data Compression) milik IBM. Selain itu juga menerapkan ECC red-while-write yang mendeteksi dan membetulkan kesalahan penulisan.
Sebagai tambahan, integritas data lebih diperbaiki dengan memanfaatkan teknologi AME (Advanced Metal Evaporated). Media pita biasanya berupalapisan bahan magnetik yang terbuat dari partikel metal atau oksida dengan berbagai kekuatan magnetik, yang dikombinasi dengan bahan perekat untuk merekatkan bahan tersebut ke pita plastik. Pelapisan media dapat dilakukan dengan penyemprotan. Namun, cara ini dapat mengakibatkan kontaminasi media dengan bahan kimia lain yang berakibat pada penurunan kualitas perekaman.Teknologi AME menggunakan ruangan hampa udara berisi partikel metal yang diuapkan, karenanya molekul magnetik ini lebih menyatu tanpa menggunakan perekat. Kemudian lapisan tersebut ditutup dengan karbon yang sangat keras menyerupai intan DLC (Diamond Like Carbon) untuk menjga lapisan magnetis dibawahnya dari keausan atau goresan. Dengan adanya pemanfaatan teknologi AME ini maka usia
pita AIT menjadi lebih lama. Pada generasi ketiga, AIT-3 memiliki kapsitasmencapai 100 gigabyte tanpa kompresi dan dengan kecepatan transfer 28 Mbps atau 260 gigabyte dengan kompresi dan kecepatan 12 Mbps. Pada teknologi generasi berikutnya, Super- AIT (S-AIT), yang memanfaatkan fitur AITberkerapatan tinggi, kapasitas tanpa kompresinya menjadi 500 gigabyte.
D. Optical Disk
Optical Disk merupakan sebuah tempat penyimpanan data elektronik yang bisa diubah/ditulis dan bisa dibaca.Cara kerjannya yaitu dengan menggunakan prinsip sinar laser yang disuntikan ke dalam bidang cakram yang mampu menyimpan data.
           Sejarah optical disk yaitu pada awal mulanya ditemukan pertama kali pada tahun 1958  dan terus mengalami perkembangan hingga sekarang.Perkembangan teknologi,meliputi:CD,CD-RW,DVD,DVD-RW,HVD,dan BlueRay.Langsung saja anda simak macam-macam serta penjelasannya berikut ini:
  • Yang pertama yaitu CD-ROM atau kepanjangan dari (Compact Disc Read Only Memory),yang berfungsi sebagai media penyimpanan yang hanya bisa ditulis hanya sekali saja dan bisa menyimpan data sebesar 700 MB.





  • CD-RW (Compact Disk-Read-Write) dari namanya saja bisa kita ketahui apa fungsi CD yang satu ini,yaitu tempat penyimpanan data yang tidak hanya bisa dibaca saja,namun juga ditulis berulang-ulang bilamana permukaan tulisnya masih normal.






    • DVD-R atau Compact Versatile Disk-Recordable,Berufugsi untuk menyimpan data dalam kapasitas yang cukup besar dan tidak dapat dirubah setelah ditulis.



      • DVD-RW (Digital Versatile Disc Read and Write),juga sama fungsinya dengan sebelumnya dan memiliki kemampuan ditulis berulang-ulang.


      • DVD-D (DVD stand as disposable) merupakan cakram optic yang berfungsi sebagai penyimpanan data,diantarannya lagu,film,dan lain-lain.Terbuat dari bahan kimia yang dapat mengubah lapisan media tersebut.Oleh sebab itu DVD ini hanya bisa dibaca selama jangka waktu tertentu saja.

      E. Hirarki & Karakteristik Sistem Memori
      A. Hirarki Sistem Memori 

      Memori adalah bagian dari komputer yang digunakan untuk menyimpan program – program dan data – data disimpan, sehingga data akan diolah menjadi suatu data hasil olahan atau sistem informasi yang akan di outputkan, sedangkan program atau intruksi digunakan untukmengolah datatersebut.Hirarki dari memori dapat digambarkan sebagai berikut: 
      1. Inboard Memori 

      Inboard memori adalah memori yang dapat diakses langsung oleh prosesor Inboard memori dibagi menjadi 3: 

      a. Register Memori 
      Merupakan jenis memori dengan kecepatan akses yangpaling cepat , memori ini terdapat pada CPU/ prosesor. Contoh : Register Data, Register Alamat, Stack Pointer Register, Memori Addres Register, Instruction Register, dll. 
      b. Cache Memori 
      Meupakan memori berkapasitas kecil yang lebih mahal dari memori utama. Cache memori terletak antara memori utama dan register pemroses, berfungsi agar pemroses tidak langsung mengacu pada memori utama agar kinerja dapat ditingakan. Cache Memory ini ada dua macam yaitu : 

      1. Cache Memory yang terdapat pada internal Processor , chace memory jenis ini kecepatan aksesnya sangat tinggi, dan harganya sangat mahal. Hal ini bisa terlihat pada Processor yang berharga mahal seperti P4,P3,AMD-Athlon dll, semakin tinggi kapasitas L1,L2 Chace memori maka semakin mahal dan semakin cepat Processor. 

      2. Chace Memory yang terdapat diluar Processor, yaitu berada pada MotherBoard, memori jenis ini kecepatan aksesnya sangat tinggi, meskipun tidak secepat chache memori jenis pertama ( yang ada pada internal Processor ). Semakin besar kapasitasnya maka semakin mahal dan cepat. Hal ini bisa kita lihat pada Motherboard dengan beraneka ragam kapasitas chace memory yaitu 256kb, 512kb, 1Mb, 2Mb dll. 
      c. Memori utama Memori Utama Memori yang berfungsi untuk menyimpan data dan program. Jenis Memori Utama : 

      1. ROM ( Read Only memory) yaitu memory yang hanya bisa dibaca saja datanya atau programnya. Pada PC, ROM terdapat pada BIOS ( Basic Input Output System ) yang terdapat pada Mother Board yang berfungsi untuk men-setting peripheral yang ada pada system. Contoh: AMIBIOS, AWARD BIOS, dll. ROM untuk BIOS terdapat beragam jenis diantaranya jenis Flash EEPROM BIOS yang memiliki kemampuan untuk dapat diganti programnya dengan software yang disediakan oleh perusahhan pembuat Mother Board, yang umumnya penggantian tersebut untuk peningkatan unjuk kerja dari peripheral yang ada di Mother Board. 

      2. RAM (Random Acces Memory) yang memiliki kemampuan untuk dirubah data atau program yang tersimpan didalamnya. Ada bebrapa jenis RAM yang ada dipasaran saat ini : 
      • SRAM • EDORAM • SDRAM • DDRAM • RDRAM • VGRAM 

      2. Outboard Storage 
      Outboard Storage adalah penyimpanan yang memiliki kapasitas lebih besar dari pada inboard memori, dan bersifat non-voltaile, serta digunakan dalam kurun waktu tertentu. Contoh dari outboard storage ini antara lain: 

      a. Magnetic Disk 
      Adalah simpana luar yang terbuat dari satu atau lebih pringan yang bentuknya seperti piringan hitam yang terbuat dari metal atau dari plastik dan permukaannya dilapisi dengan magnet iron-oxide, dan memiliki Read/Write protect notch ( lubang proteksi baca dan tulis ). 

      b. Hard Disk 

      Terbuat dari piringan keras dari bahan alumunium atau keramik yang dilapisi dengan zat magnetik kapasitas dari hard disk berkisar antara 5 megabyte sampai 1 gigabyte.saat ini komputer telah menggunakan kapasitas hard disk hingga 80 gigabyte lebih. 
      3. Off-line Storage

      Off-line storage tergolong dalam penyimpana yang lambat karena masih menggunakan pita magnetik. Riskannya penggunakan dana lama masa pakai membuat jenis penyimpanan ini saangat jarang digunakan. Contoh : 
      1. Cardride tape.
      2. WORM, dll. 
      Tipe Memori, Waktu dan Pengontrolan. 
      Tipe memori berdasarkan tempat dan pengaksesan prosesor dibedakan menjadi: 
      1. Memori Internal 
      Register Main Memory Chache Memory Memori Eksternal Magnetik Disk Floppy Disk IDE Disk SCSI Disk RAID Optical Disk CDROM CD-R CD-RW DVD Pita Magnetik 
      1. Inboard Memori 
      Inboard memori adalah memori yang dapat diakses langsung oleh prosesor Inboard memori dibagi menjadi 3: 
      a. Register Memori 
      Merupakan jenis memori dengan kecepatan akses yangpaling cepat , memori ini terdapat pada CPU/ prosesor. Contoh : Register Data, Register Alamat, Stack Pointer Register, Memori Addres Register, Instruction Register, dll. 
      b. Cache Memori 
      Meupakan memori berkapasitas kecil yang lebih mahal dari memori utama. Cache memori terletak antara memori utama dan register pemroses, berfungsi agar pemroses tidak langsung mengacu pada memori utama agar kinerja dapat ditingakan. Cache Memory ini ada dua macam yaitu : 

      1. Cache Memory yang terdapat pada internal Processor , chace memory jenis ini kecepatan aksesnya sangat tinggi, dan harganya sangat mahal. Hal ini bisa terlihat pada Processor yang berharga mahal seperti P4,P3,AMD-Athlon dll, semakin tinggi kapasitas L1,L2 Chace memori maka semakin mahal dan semakin cepat Processor. 

      2. Chace Memory yang terdapat diluar Processor, yaitu berada pada MotherBoard, memori jenis ini kecepatan aksesnya sangat tinggi, meskipun tidak secepat chache memori jenis pertama ( yang ada pada internal Processor ). Semakin besar kapasitasnya maka semakin mahal dan cepat. Hal ini bisa kita lihat pada Motherboard dengan beraneka ragam kapasitas chace memory yaitu 256kb, 512kb, 1Mb, 2Mb dll. 
      c. Memori utama 
      Memori Utama Memori yang berfungsi untuk menyimpan data dan program. Jenis Memori Utama : 
      1. ROM ( Read Only memory) yaitu memory yang hanya bisa dibaca saja datanya atau programnya. Pada PC, ROM terdapat pada BIOS ( Basic Input Output System ) yang terdapat pada Mother Board yang berfungsi untuk men-setting peripheral yang ada pada system. Contoh: AMIBIOS, AWARD BIOS, dll. ROM untuk BIOS terdapat beragam jenis diantaranya jenis Flash EEPROM BIOS yang memiliki kemampuan untuk dapat diganti programnya dengan software yang disediakan oleh perusahhan pembuat Mother Board, yang umumnya penggantian tersebut untuk peningkatan unjuk kerja dari peripheral yang ada di Mother Board. 
      2. RAM (Random Acces Memory) yang memiliki kemampuan untuk dirubah data atau program yang tersimpan didalamnya. Ada bebrapa jenis RAM yang ada dipasaran saat ini : • SRAM • EDORAM • SDRAM • DDRAM • RDRAM • VGRAM 
      2. Outboard Storage 
      Outboard Storage adalah penyimpanan yang memiliki kapasitas lebih besar dari pada inboard memori, dan bersifat non-voltaile, serta digunakan dalam kurun waktu tertentu. Contoh dari outboard storage ini antara lain: 
      a. Magnetic Disk 
      Adalah simpana luar yang terbuat dari satu atau lebih pringan yang bentuknya seperti piringan hitam yang terbuat dari metal atau dari plastik dan permukaannya dilapisi dengan magnet iron-oxide, dan memiliki Read/Write protect notch ( lubang proteksi baca dan tulis ). 
      b. Hard Disk 
      Terbuat dari piringan keras dari bahan alumunium atau keramik yang dilapisi dengan zat magnetik kapasitas dari hard disk berkisar antara 5 megabyte sampai 1 gigabyte.saat ini komputer telah menggunakan kapasitas hard disk hingga 80 gigabyte lebih. 
      3. Off-line Storage
      Off-line storage tergolong dalam penyimpana yang lambat karena masih menggunakan pita magnetik. Riskannya penggunakan dana lama masa pakai membuat jenis penyimpanan ini saangat jarang digunakan. Contoh :

      1. Cardride tape.
      2. WORM, dll. 
      Tipe Memori, Waktu dan Pengontrolan. 

      Tipe memori berdasarkan tempat dan pengaksesan prosesor dibedakan menjadi: 1. Memori Internal

      Register
      Main Memory
      Chache Memory
      Memori Eksternal
      Magnetik Disk
      Floppy Disk
      IDE Disk
      SCSI Disk
      RAID
      Optical Disk
      CDROM
      CD-R
      CD-RW
      DVD Pita Magnetik

      Pengontrolan memori dapat dijabarkan : 
      1. Sequential access 
      Memori diorganisasi menjadi unit unit data yang disebutrecord.Akses harus dibuat dalam bentuk urutan linier yang spesifik. Informasi pengalamatan yang disimpan dipakai untuk memisahkan record record dan untuk membantu proses pencarian.Terdapat shared read/write mechanism untuk penulisan/pembacaan memorinya. Pita magnetik merupakan memori yang menggunakan metode sequential access. 
      2. Direct access 
      Sama sequential access terdapat shared read/writemechanism. Setiap blok dan record memiliki alamat unik berdasarkan lokasi fisiknya. Akses dilakukan langsung pada alamat memori. Disk adalah memori direct access 
      3. Random access 
      Setiap lokasi memori dipilih secara random dan diakses serta dialamati secara langsung. Contohnya adalah memori utama. 
      4. Associative access 

      Jenis random akses yang memungkinkan pembandingan lokasi bit yang diinginkan untuk pencocokan. Data dicari berdasarkan isinya bukan alamatnya dalam memori. Contoh memori ini adalah cache memori Waktu akses memori dapat dijabarkan : 

      1. Access time 
      Bagi random access memory, waktu akses adalah waktu yang dibutuhkan untuk melakukan operasi baca atau tulis. Memori non-random akses merupakan waktu yang dibutuhkan dalam melakukan mekanisme baca atau tulis pada lokasi tertentu. 

      2. Memory cycle time 
      Konsep ini digunakan pada random access memory terdiri dari access time ditambah dengan waktu yang diperlukan transient agar hilang pada saluran sinyal. 
      3. Transfer rate 
      Kecepatan data transfer ke unit memori atau dari unit memori. 1.Random access memory sama dengan 1/(cycle time). 2. Non-random access memory dengan perumusan : 
      TN = TA + (N/R) TN = Waktu rata rata untuk membaca atau menulis N bit TA = Waktu akses rata rata N = Jumlah bit R = Kecepatantransfer dalam bit per detik (bps) 

      B. Karakteristik Sistem Memori (secaraumum) 

      Ada 8 karakteristik Memori yaitu : 
      1. Lokasi Memori 

      Ada 3 lokasi keberadaan memori di dlm sistem komputer yaitu : 

      A. Memori Lokal (CPU) 
      • Memori ini built-in berada dalam CPU • Memori ini diperlukan untuk semua kegiatan CPU • Memori ini disebut register. Register digunakan sebagai memori sementara dalam perhitungan maupun pengolahan data dalam prosesor 

      B. Memori Internal (Main memori) 
      • Diluar CPU tetapi bersifat internal terhadap sistem computer. • Diperlukan oleh CPU untuk proses eksekusi program. Sehingga dapat diakses secara langsung oleh prosesor tanpa modul perantara. • Memori internal menggunakan media RAM 

      C. Memori Eksternal 
      • Eksternal terhadap sistem komputer & berada diluar cpu • Untuk menyimpan data/instruksi secara permanen • Tidak diperlukan dalam proses eksekusi sehingga tidak dapat di-akses langsung oleh cpu • Memori ini terdiri dari perangkat storage peripheral (disk, pita, magnet , dll) 

      2. Kapasitas Memori 
      • Kapasitas register (memori lokal) dinyatakan dalam bit • Kapasitas main memori dalam byte (8 bit) atau word. Panj ang word umumnya 8,16 & 32 bit. • Kapasitas memori eksternal dinyatakan dalam byte 

      3. Satuan Transfer 
      Satuan transfer sama dengan jumlah saluran data yang masuk ke dan keluar dari modul memori. 
      • Bagi memori internal, satuan transfer merupakan jumlah Bit yg dibaca atau yg dituliskan ke dlm memori pd suatu saat.. Jumlah saluran ini sering kali sama dengan panjang word, tapi dimungkinkan juga tidak sama • Bagi memori eksternal, data ditransfer dlm juml yg jauh lebih besar dari word (block). Konsep Satuan Transfer • Word, merupakan satuan “alami”organisasi memori. Ukuran word biasanya sama dengan jumlah bit yang digunakan untuk representasi bilangan dan panjang instruksi. • Addressable units, pada sejumlah system, addressable unit adalah word. Namun terdapat system dengan pengalamatan pada tingkatan byte. Pada semua kasus hubungan antara panjang suatu alamat (A) dan jumlah (N) addressable unit adalah 2A =N. • Unit of Transfer adalah jumlah bit yang dibaca atau dituliskan, kedalam memori pada suatu saat. Pada memori eksternal, transfer data biasanya lebih besar dari suatu word, yang disebut dengan block 

      4. Metode Akses Memori 
      Terdpt 4 jenis pengaksesan satuan data, sbb: 

      a. Sequential Access 
      • Memori diorganisasikan menjadi unit –unit data yang disebut record • Akses harus dibuat dalam bentuk urutan linier yang spesifik • Informasi pengalamatan yang disimpan dipakai untuk memisahkan record –record dan untuk membantu proses pencarian. • Terdapat shared read/write mechanisme untuk penulisan/pembacaan memorinya. • Pita magnetic merupakan memori yang menggunakan metode sequential access 
      b. Direct Access 
      • Menggunakan shared R/W mechanism, tetapi setiap blok & record memiliki alamat yg unik berdasarkan lokasi fisik • Akses dilakukan langsung pada alamat memori • Waktu aksesnya bervariasi • Contohnya adalah akses pada disk 

      c. Random Access 
      • Setiap lokasi dpt dipilih secara random & diakses serta dialamati secara langsung. • Waktu mengakses lokasi tertentu tidak tergantung pada urutan akses sebelumnya & bersifat konstan. • Contohnya adalah sistem main memori 

      d. Associative Access 
      • Jenis random akses yang memungkinkan pembandingan lokasi bit yang diinginkan untuk pencocokan • Data dicari berdasarkan isinya bukan alamatnya dalam memori • Contoh memori ini adalah cache memori 
      5. Kinerja Memori 
      Ada 3 buah parameter u/ kinerja sistem memori, yaitu 
      • Waktu Aksess (seek time) 

      • Bagi RAM, waktu akses : waktu yg dibutuhkan untuk melakukan operasi W/R • Bagi non RAM, waktu akses : waktu yg dibutuh-kan u/ melakukan mekanisme W/R pd lokasi tertentu. • Waktu siklus (Cycle Time) • Waktu akses ditambah dgn waktu transien hingga sinyal hilang dari saluran atau u/ menghasilkan kembali data ini dibaca secara destruktif. • Konsep ini digunakan pada RAM • Laju Pemindahan (Transfer Rate) • Transfer rate : kecepatan pemindahan data ke unit memori/ditransfer dari unitmemori. • Bagi RAM, transer rate = 1/siklus waktu • Non-random access memory dengan perumusan sbb : TN = TA + (N/R) Dimana : TN = Waktu Rata-rata untuk membaca atau menulis N bit TA = Waktu Akses Rata-rata N = Jumlah Bit R = kecepatan transfer dalam bit per detik (bps) 

      6. Tipe Fisik Memori 
      Ada 2 tipe fisik memori, : 

      + Memori Semikonduktor, memori ini memakai teknologi VLSI (very Large Scale Integration) Memori ini banyak digunakan untuk RAM + Memori Permukaan Magnetik, digunakan u/ disk atau pita magnetik. 
      7. Karakteristik Fisik 
      Ada 2 yg mencerminkan karakteristik tsb: 
      a. Volatile dan Non volatile 
      Volatile, informasi. akan rusak secara alami/hilang bila daya listrik dimatikan. Sedangkan Non volatile sebaliknya 
      b. Erasable non erasable 
      Erasable : isi memori dapat dihapus & di-gantikan dengan inf. dgn inf lainnya. Memori semikonduktor yg tdk terhapuska dan non volatile adalah ROM. 
      8. Organisasi 
      Pengaturan bit dalam menyusun word secara fisik.

      Sumber: https://komputermesh.blogspot.co.id/2015/01/pengertian-dan-fungsi-optical-disk.html
      http://meidialestari.blogspot.co.id/2014/10/karakteristik-memori.html 



























      Kebijakan Keamanan Jaringan Dan Serangan Terhadap Keamanan Jaringan

      1. Jelaskan konsep keamanan jaringan ? Jawab :    Keamanan jaringan adalah suatu cara atau suatu system yang digunakan untuk memberika...